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Abstract
We assess routes to a diamond-based quantum computer, where we specifically look towards
scalable devices, with at least 10 linked quantum gates. Such a computer should satisfy the
deVincenzo rules and might be used at convenient temperatures. The specific examples that we
examine are based on the optical control of electron spins. For some such devices, nuclear spins
give additional advantages. Since there have already been demonstrations of basic initialization
and readout, our emphasis is on routes to two-qubit quantum gate operations and the linking of
perhaps 10–20 such gates. We analyse the dopant properties necessary, especially centres
containing N and P, and give results using simple scoping calculations for the key interactions
determining gate performance. Our conclusions are cautiously optimistic: it may be possible to
develop a useful quantum information processor that works above cryogenic temperatures.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In his Newton Medal talk, London 2008, Anton Zeilinger said:
‘we have to find ways to build quantum computers in the solid
state at room temperature—that’s the challenge’. Indeed it
is a challenge. But a recent analysis (Stoneham 2009) gave
cautious grounds for optimism, with diamond as a key material.

Quantum computers differ from classical computers in
that they exploit entanglement, the correlations between local
measurements on two particles. Such a computer, successfully
implemented, could carry out some potentially important
classes of calculation well beyond the capabilities of classical
devices. There is no such computer today, and indeed doubts
have been expressed about the possibilities of success. It is
prudent therefore to look at the current successes and future
challenges to assess the feasibility of a quantum computer
based on diamond.

Broadly speaking, three classes of quantum computer have
been suggested that exploit favourable properties of diamond.
In Class 1, the demonstrated special qualities of an NV− centre
(discussed below) are exploited, usually making use of the
NV− electron spin to manipulate nearby carbon or nitrogen
nuclear spins (e.g., van Oort et al 1988, Jelezko and Wrachtrup
2004, Wrachtrup and Jelezko 2006, Greentree et al 2006).
Class 2 follows the ideas of Stoneham et al (2003, to be
referred to as SFG), requiring two dopant or defect species.

The electron spins of one species (perhaps substitutional N, or
possibly NV−) provides qubits, and these are manipulated by
electronically-excited control species (perhaps substitutional
P). In Class 3, quantum entanglement is created between
remote systems (Cabrillo et al 1999), such as NV− centres in
distinct diamonds, by a measurement involving ‘single shot’
excitation (Benjamin et al 2009) that leaves the two systems
entangled, and available for various quantum computation
strategies, such as measurement-based quantum computing.

The present paper looks primarily at Class 2 approaches,
based on the optical control of localized defects in diamond.
Two important questions concern decoherence times and
scalability. Will quantum entanglement last long enough for
useful calculations? Can one link enough qubits together
successfully to make a useful computer? As discussed
below, there are many papers on Class 1 approaches, with
demonstrations of quantum operations and simple gates.
However, it is not at all obvious how Class 1 can be scaled
up, despite some very ingenious experimental work, like
the creation of close pairs of NV− centres by implantation
of nitrogen molecules. There has been informal talk of
nanoelectrodes, but these seem unlikely to be practical, even
if they can be fabricated, if only from issues such as charge
fluctuations and noise. Class 3 show promise, but will be
discussed here only to define some of the condensed matter
physics factors that may prove limiting.
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For any practical quantum computer, major challenges
include issues of fabrication, and the linkage of the quantum
device to the classical silicon-based and photonic devices
that will be used to run it. Integration of the whole
system may prove especially hard, given the length scale
and demands of the active components. Ideally, the system
should be one that could be created in a current or near-
future fabrication plant. The Class 2 (SFG) approach is
of this type, though the complexity of system integration
should not be underestimated. The specifically materials
issues have been discussed by us previously (Stoneham 2005,
2008a, 2008b), and will not be repeated here, where we shall
concentrate primarily on the species that might be exploited in
an SFG scheme. We combine simple scoping calculations with
available experimental information to analyse what might be
feasible.

2. Basic issues of quantum information processing

Both Class 2 and Class 3 approaches appear to have the
potential to be scaled to reasonably large computer sizes, to
be compatible with current silicon microelectronic and laser
technologies, and to work well above cryogenic temperatures.
For Class 1, scalability is more questionable. But any quantum
computer can succeed only if it can meet a whole series
of other challenges. One set of challenges is summarized
in the DiVincenzo criteria (DiVincenzo and Loss 1998). In
describing these, we assume the qubits are electron spins,
unless otherwise stated. Clearly, there are ways to take
advantage of nuclear spins, especially as quantum information
stores, but analysing such routes is not part of the present paper.

The DiVincenzo rules, briefly summarized, are these:

(i) Is there a well defined Hilbert space to represent the
quantum information? The qubit spins do define a suitable
space. There could be problems at high temperatures, e.g.,
if spins ionize thermally, but room temperature is cool
enough for diamond dopants.

(ii) Initializing qubit states. Several approaches are possible,
some exploiting selection rules in optical or microwave
transitions; these have already been demonstrated for NV−
centres (e.g., Manson et al 2006). Alternative methods,
such as spintronic approaches in which the system is
flushed with spin-polarized carriers, are possible but
probably unnecessary. Polarized electronic spin qubits can
be used to polarize coupled nuclear spin qubits (Morley
et al 2007). Brute force methods needing thermalization
in an applied field need Zeeman energies much larger than
thermal energies, gβ H � kT , and this can be difficult to
meet except at low temperatures (Morley et al 2008).

(iii) Manipulating quantum information. Manipulations
usually need faster transitions, so as to give effective
switching at faster clock speeds. Most computer
architectures demand some way to select one quantum
gate rather than another, and this can put limits on
acceptable optical linewidths.

(iv) Avoid decoherence for long enough to compute. Entangle-
ment is the resource that could make quantum computing
worthwhile, and describes the correlations between local

measurements on the qubit spins that might be described
informally as their ‘quantum dance’. The enemy of en-
tanglement is decoherence, just as friction is the enemy of
mechanical computers. One obvious decoherence mech-
anism is spin relaxation, which degrades both entangle-
ment and quantum information stored as qubits. Spin–
spin relaxation, from the interactions of qubit spins with
any other spins—nuclear or electron—can be minimized
in various ways, e.g., by eliminating nuclear spins in an
isotopically pure sample (Tyryshkin et al 2006, Balasub-
ramanian et al 2009). In the SFG scheme, spins will be
in modest-sized patches, perhaps a few 100 nm across,
and containing only perhaps a few hundred spins. This
already makes flip-flop processes (from S1+S2− dipole
dipole terms) less favourable as energy conservation by
the spin–spin interaction reservoir is more limited. Fur-
ther suppression is possible with controlled inhomogene-
ity, e.g., through the effect of strain on g factors (Stoneham
1975 section 12.4.2). Spin–lattice relaxation is especially
slow in diamond, partly because of the small spin–orbit
coupling and partly because of the high sound velocity
(the direct process rate ∼v−5, Raman (two phonon) rate
∼v−10 (Stoneham 1975 section 14.2.2)). Even at room
temperature, Ns has a relaxation time of order 1 ms.

(v) Readout of the quantum information. This needs to
be done quickly, before quantum information is lost.
There are many options for readout of single spins, some
demonstrated for the NV− centre in diamond (e.g., Jelezko
and Wrachtrup 2004, Popa et al 2004, Wrachtrup and
Jelezko 2006). We aim to discuss alternative strategies to
sequential readout in a separate paper.

(vi) Scalability. Can one combine the manipulations of
individual qubits into a system that manipulates usefully
large numbers of qubits? There is little point in doing
a quantum calculation unless it can achieve more than
a calculation on existing classical computers. Using
quantum methods to factorize 15, or search a directory
of 4 items impressively demonstrate principles, but hardly
justify quantum methods, any more than they would have
justified a mechanical computer in the 19th century. For
present purposes, we assume that a quantum computer
with say 20 qubits or 20 gates has promise. One
would imagine such ‘mini-computers’ linked into useful
combinations, a non-trivial achievement. But a dozen
linked mini-computers—say 200–250 qubits—would be a
useful device, at least if error correction were not needed.
System integration is certainly a major challenge, and we
shall discuss some of the possible strategies.

3. Diamond quantum information processing:
present status

Some quantum operations have already been demonstrated at
room temperature in diamond (e.g., Hanson et al 2006b), but
progress towards an integrated system with tens or hundreds
of linked quantum gates is a far harder challenge. Diamond
is what one might call silicon-compatible. Of course, using
silicon directly, especially if fabrication were feasible in a
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Figure 1. The Stoneham Fisher Greenland (SFG) approach. Quantum gates exploit optical control of electron spins. Coupling between qubits
(shown as large dots) is only significant when the control dopants (small dots) are excited. The laser source can focus only to about a square
wavelength, far larger than spacings of a few nanometre needed for entanglement. Selection of a particular gate (control plus qubits) exploits
inhomogeneous broadening: different wavelengths excite different gates in a random system. Thus in (a) one wavelength entangles one group,
whereas (b) a different wavelength entangles another group, and leaves the first group unaffected; (c) after two excitations, two gates have
made controlled changes in entanglements.

fabrication plant reasonably similar to the ones that exist today,
would make practical QIP more likely.

As already noted (Stoneham 2008a, 2008b), diamond
has many good features. There is a wealth of spectroscopy
(Bridges et al 1990, Clark et al 1992 in Field 1992), optical
and spin resonance. The spectra show many very sharp spectral
lines, including a few that are sharp at room temperature. The
low spin–orbit coupling and high sound velocity minimize
spin–lattice relaxation. Transition energies of many defects
and dopants lie in convenient ranges. Regrettably, there
are also bad features. It is not easy to prepare the defect
species you want. The choices of donors are very limited.
Since it is not practical to stress diamond enough to split
acceptor levels by more than largest phonon energies, the spin
lattice relaxation of acceptors like B makes them hard to use
effectively.

There are already many experiments that identify quantum
operations in diamond (e.g., Wrachtrup and Jelezko 2006).
Thus there has been optical initialization (e.g., van Oort and
Glasbeek 1989, Mayer Alegre et al 2007) and readout (e.g.,
Jelezko and Wrachtrup 2004). There have been manipulations
of a single spin, equivalent to a so-called A gate (e.g., Hanson
et al 2006a). Quantum operations have been demonstrated
using the NV− electron spin and 15N nuclear spin (Kennedy
et al 2002), using the NV− electron spin and 13C nuclear spin
(e.g., Wrachtrup et al 2001, Jelezko et al 2004a, Popa et al
2004), and involving NV− and nearby Ns (e.g., Glasbeek and
van Oort 1990, Hanson et al 2006b, 2006a). There will surely
be more examples by the time this paper appears.

4. System needs for diamond-based quantum
information processing: qubit and control species for
the SFG approach

In devising the SFG gate, the aim was to have a system in
which there were no ultra-nanoelectrodes, no need for rapid
switching of applied fields, and no need for exact placements
of atoms or molecules. Its basic ingredients are as follows.
First, there are dopants that act as qubits that store quantum
information. As such, they must be stable at the operating
temperature and should have long decoherence times. If the
qubits are electron spins in diamond, likely qubits might be
substitutional N or NV− centres. In principle, one could

arrange to pass quantum information from an electron spin to a
longer-lived nuclear spin, but that introduces extra complexity
and opportunities for error. Secondly, there is a distinct
dopant species, the control species, used to manipulate the
qubits. Ideally, the qubits and control interact negligibly
in their electronic ground states. When a control dopant is
excited, the more extended excited state wavefunction allows
it to interact with qubits, leading to an entangling interaction
between such qubits. A possible control species in diamond
is substitutional P. Figure 1 illustrates the SFG approach
schematically.

The spacings between these various qubit and control
species must allow a reasonable magnitude of the interaction
when the control is excited. This means (see below) spacings
of a few nanometre. Such spacings are some two orders of
magnitude less than the wavelengths of light used to excite
the controls. Clearly, it is impossible to focus light down
on just a single gate, i.e., a single control plus the nearby
qubits whose entanglement is to be manipulated. However,
inhomogeneity is an important resource. The excitation energy
of any particular control/qubit group will depend on the precise
distances and orientations of the qubit dopants relative to the
control dopant. Moreover, the local strain, the local electric
fields, and—if the surface is nearby—the presence of surface
steps, all will lead to transition energies that vary from one
gate to another. What matters is the excitation energy for a
particular gate (control plus relevant qubits) and not whether
the inhomogeneity mechanism operates primarily on the qubit
or the control. In short, randomness is desirable, and is
exploited in the SFG approach. Gate selection is achieved
partly by spatial discrimination (optics, to 1–2 μm say),
and partly by spectral discrimination, using the fact that key
frequencies vary from one control site to the next. If need be,
there are ways to enhance this inhomogeneity.

The qubits, which store quantum information, will
normally have spin 1/2, like substitutional N. Spin 1 systems
might be used if the ground state is S = 1 (like NV−) but most
systems with even numbers of electrons have spin zero ground
states (like PV−). Spin systems with S = 1 or larger often
have faster decoherence from δS = 1 spin lattice relaxation
transitions and bigger spin–spin relaxation rates. The qubits
can be relatively compact (like NV− or substitutional N).
Acceptors, like B, are not good choices for qubits, since the
valence band degeneracy leads to rapid spin–lattice relaxation.
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For control species, the needs are somewhat different, and
the contrast in orbital extent between ground and excited states
is especially important. Usually controls will have S = 1/2,
like substitutional P. If any other spin is used, the control is
likely to leak quantum information. For S = 0, for instance,
excitation creates an electron (useful) and a hole, and the hole
may relax its spin to cause decoherence. The control must have
an accessible excited state that is reasonably delocalized, since
this is what enables the qubit–qubit entanglement. Almost
any diamond donor that has accessible excited states should
do, even those unidentified species that are detected in donor–
acceptor pair transitions. However, some diamond Rydberg
states are not accessible, e.g., those that give rise to the GR2-
GR8 lines of the neutral vacancy (Mainwood and Stoneham
1997). The control excited state should not have fast transitions
to other states, since we want to use a stimulated absorption-
stimulated emission sequence to control entanglements. This
condition may well be met for substitutional P, but remains to
be checked. Finally, the optical transition of any one control
(with appropriate qubits) must be sharp in energy, so that many
distinct gates can be resolved in the inhomogeneous line. The
sharpness is an important factor in scalability.

We shall discuss architectures and characterization later.
Bearing in mind that a random distribution of controls and
qubits will have some members that are placed so as to be
useless, we might expect a minimal computer of say 10–20
gates to comprise some 100–200 dopants within a relatively
small region, perhaps a few 100 nm across. There are relevant
discussions of gate performance and its optimization, and also
the implementation of simple algorithms in Kerridge et al
(2007), Gauger et al (2008) and Del Duce and Bayvel (2009).

5. Dopants and defects in diamond: specific systems

The spectroscopic data for defects in diamond (e.g., Bridges
et al 1990, Field 1992) includes symmetries of the excited
states in many cases, mainly through careful applied stress
work (e.g., Davies and Hamer 1976). Yet very little indeed
is known about the radial extent of excited states or even
about excited state ionization energies. In this section we
summarize some basic information on four important defect
species, combining theory and experiment to estimate key
parameters.

We shall assume that, for practical purposes, the several
species will be stable in the selected charge states. It is not
entirely obvious that this is true. For instance (Goss 2008a)
if P and N donors are present, it is probably stable to have
P+ and N−, rather than P0 and N0. But, in good insulators
like diamond, equilibrium may be very slow to establish,
and effective stability over months or even years may be
achievable. Certainly (Haenen 2008) P donor and B acceptor
spectra can be seen in the same sample. These considerations
may influence a choice between N and NV− as qubit. We
remark that it should be possible to choose C or N isotopes
without a large extra cost.

5.1. The isolated substitutional nitrogen dopant Ns

Substitutional nitrogen has been widely studied with spin
resonance, giving very precise values for hyperfine constants.
The centre has 〈111〉 symmetry, not through a Jahn–Teller
effect, but because of the single occupance of an antibonding
N–C orbital. Incoherent reorientation between the four
equivalent 〈111〉 orientations has been studied (Ammerlaan
and Burgemeister 1981) and, at room temperature, spin lattice
relaxation and reorientation are comparable. It may be that
spin relaxation is marginally slower than reorientation. The
long spin lattice relaxation time, of order 1 ms at room
temperature, is encouraging for quantum applications. Whilst
photoionization of Ns has been identified, there seem to be no
interesting bound excited states or useful optical transitions.

5.2. The nitrogen-vacancy centre NV −

The nitrogen-vacancy centre usually refers to NV−, rather than
NV0. The NV0 charge state is not normally accessed in the
operations of interest here (Felton et al 2008). Remarkably,
important pioneering studies relevant to quantum information
processing were carried out by Glasbeek some 20 years ago
(van Oort and Glasbeek 1992), before spin manipulations were
associated with quantum computing. The NV− centre has a
relatively compact S = 1 ground state, and its negative charge
means capture of another electron is not favoured.

The NV− line width can be very narrow (e.g., Shen et al
2008, Fuchs et al 2008, Davies 1974), so it is possible to
observe shifts of the excitation energies of individual centres as
they are tuned by electric or stress fields (Tamarat et al 2006).
Davies (1974) discusses its temperature dependence. Thus
random charged defects will give inhomogeneous broadening.
Even spin zero charged defects (perhaps P+ ionized donors,
or PV−) can cause a useful spread of excitation energies
(for a survey of inhomogeneous broadening mechanisms, with
quantitative estimates, see Stoneham (1969)). Initialization
and readout of NV− centres have been demonstrated optically
at room temperature (Hanson et al 2006b, 2006a).

Decoherence is relatively slow (Redman et al 1991,
Kennedy et al 2003, Takahashi et al 2008, Jiang et al 2008),
and has been studied and appears to be understood, mainly
in terms of spin–spin and spin–lattice relaxation. The room
temperature spin dephasing time is longer than any observed
to date in a solid-state system (Balasubramanian et al 2009).
Often S = 1 defects seem less useful than S = 1/2 ones, since
δS = 1 transitions tend to have faster spin lattice relaxation
(decoherence) and bigger spin–spin relaxation rates; for NV−,
this does not seem a major issue.

Single NV− defects have been studied with optically-
detected magnetic resonance at room temperature (Gruber et al
1997). Optical Rabi oscillations have been observed (Batalov
et al 2008). Single electron spin readout has been demonstrated
in a time that is shorter than the decoherence times by working
at low temperatures (Jelezko et al 2002). Simple single
centre (A gate) operations have been carried out optically.
Both nuclear and electron spin options for qubits have been
exploited, recognizing that both 13C and 14N spins can be
important (Neumann et al 2008, Lovett and Benjamin 2009,
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Neumann et al 2009). The 14N leads to hyperfine splittings
(I = 1, hence MI = +1, 0,−1). Kennedy et al (2002) have
suggested using the N spin and the NV− electron spin for a
two-spin gate. This is an important achievement, but does not
seem to offer a route to scalability.

Spin dynamics has been studied in the excited state, and
Autler–Townes behaviour, Hahn echoes, and other coherences
have been observed (Tavares et al 1994, Jelezko et al 2004a,
2004b, Batalov et al 2008).

5.3. Other nitrogen centres related to radiation damage

If we want qubit and control dopants for room temperature,
then the ideal candidates would have a small Huang–Rhys
factor (to ensure as much as possible of the intensity in
the zero phonon line) and a very narrow zero phonon line,
even at these temperatures. We should note that the Huang
Rhys factor depends on first order (linear) electron–phonon
coupling, whereas zero phonon linewidths depend on second
order couplings (Stoneham 1975 chapter 14).

There are many centres that have sharp zero phonon lines
at 77 K, but far fewer still sharp at room temperature. Some
such lines are discussed by Davies (1974), where there is an
analysis of the mechanisms of broadening and line shifts with
temperature. His analysis of seven centres (NV− at 1.945 eV, a
centre at 2.086 eV, the H3 centre at 2.463 eV, N3 at 2.985 eV,
ND1 at 3.150 eV, a centre at 3.188 eV, and the 5.251 eV N9
centre) implies that there are many centres in diamond with
very sharp zero phonon lines at 77 K. We are also indebted
to Collins (2008) for identifying some that are sharp at room
temperatures, namely the N3 centre (2.985 eV, a vacancy
with three N neighbours), the H2 centre (1.257 eV, an NsVNs

complex in a negative charge state), the H1b centre (0.6124 eV,
a radiation complex including Ns − Ni) and the H1c centre
(0.64 eV, a radiation complex involving N). It is notable that
most of the interesting centres involve substitutional nitrogen
with radiation damage defects like vacancies.

5.4. The isolated substitutional P donor

5.4.1. Spectroscopy. The phosphorus donor in diamond
is tantalizing. A number of spectroscopic measurements
(e.g., Nesladek et al 1999, Gheeraert et al 2000, Haenen
et al 2000, Barjon et al 2007, Lazea et al 2008) show a
centre whose optical transitions can be mapped onto those
for an effective mass donor with ionization energy of order
0.6 eV. Results for bound excitons (Lazea et al 2008) are
consistent with these ideas, if one follows the empirical
Haynes Rule. This ionization energy is large for traditional
semiconductor applications, but in a very convenient range
for some approaches to quantum computing, such as the
SFG strategy. The P donor transitions broaden at room
temperature, but it is not clear how much of the energy spread is
inhomogeneous broadening and how much is phonon-induced
homogeneous broadening. One interesting conclusion (Jones
et al 1996) is that the PV− centre has a spin zero ground
state, and so cannot be exploited using the same tricks as the
NV− centre. However, the charged PV− centres can contribute
beneficially to inhomogeneous broadening.

Electron spin resonance measurements have established
the g-factor and hyperfine constants of substitutional
phosphorus centres introduced by chemical vapour deposition
(Katagiri et al 2006).

What makes these ideas tantalizing is the lack of
information on the diamond conduction band effective masses,
since it is not possible to separate out the central cell
corrections. We shall try instead to put bounds on
quantities relevant for quantum information processing. Such
scoping calculations can be done using relatively simple
methods, though fuller approaches will be needed once more
experimental information is available.

5.4.2. Theory for the ground state. Several studies (Gheeraert
et al 2000, Wang and Zunger 2002, Butorac and Mainwood
2008, Eyre et al 2005) have assessed the P donor in diamond,
with emphasis on the ground state and its symmetry, and
on the ionization energy. The results are broadly in accord
with observation. There is an important point (Goss 2008a)
that, if substitutional N and P are both present, it is probably
energetically favourable for the P to donate its electron to
the N, giving P+ and N−. The extent to which this happens
in a highly insulating system needs an experimental check.
Provided usable P0 remain, as the charged defects have zero
spin, their main effect will be to enhance inhomogeneous
broadening, which could be desirable.

5.4.3. Theory for excited states: effective mass wavefunctions.
There are remarkably few serious calculations of excited states
of shallow defects in group IV systems, and especially so
for diamond. Experiment gives little information on one
key aspect needed here, namely the extent of the excited
state wavefunction in diamond. Even the electron effective
mass is not known with useful accuracy for diamond, and
all sensible values would imply a wavefunction towards the
compact limit of effective mass theory. Nonetheless, effective
mass theory often works well even close to its expected limits
of validity, and we may use it with caution to scope important
parameters. The results from the four simple models below
give a reasonably consistent and certainly helpful estimate of
the important interactions in the scoping calculations we give
later.

Method 1. Suppose we know the effective Rydberg Reff

(the ionization energy, ideally after removing any central
cell corrections). Then this should be the real Rydberg
(13.6 eV) multiplied by (m∗/m0)/ε

2, i.e., (m∗/m0)/ε
2 ∼

Reff/13.6 eV. The dielectric constant ε = 5.7 (Field
1992). The effective Bohr radius is a0ε/(m∗/m0), thus
0.529 Å [13.6/5.7]/Reff (eV), giving 3.98a0 (or 2.1 Å) for
Reff = 0.6 eV. However, there could be a central cell term
that would give the wavefunction a greater spread. So, if the
effective Rydberg without central cell were say 0.4 eV, then the
effective Bohr radius would be larger by a factor 1.5 (3.16 Å).
This sounds small, but the real question concerns the sizes of
the interactions.
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Figure 2. (a) The exchange energy between two donors in diamond as a function of separation. The dashed line is for both donors in their
ground states, the solid line for one in the ground state and the other in the first excited P state. (b) The exchange energy between two different
donors in diamond as a function of separation, one a control, as in (a), the other a more compact qubit with an effective Bohr radius half that
of the control. The dashed line is for both donors in their ground states, the solid line for qubit in its ground state and the control in its first
excited P state.

Method 2. Another route is to use the bound exciton
information, since hole effective masses are known. To do this,
however, one needs further information, such as the empirical
Haynes rule that the exciton binding is often about 0.1 of the
donor binding (see Stoneham 1975 p 840). The bound exciton
data are quite good, implying a binding of about 0.09 eV,
hence—if we accept the 0.1 factor—a donor energy of 0.9 eV.
This approach was used by Nakazawa et al (2001), who also
used data for the boron acceptor ionization energy, predicting
605 meV for the P ionization energy.

Method 3. Other measures of the orbital extent in the
ground state come from experimental and theoretical data
as to interactions between donors. Thus one might analyse
spin resonance data for systems like the N4 system to see
when two N atoms become essentially undistinguishable from
two separate N substitutionals. Goss (2008b) indicates that
nitrogens at fifth neighbour separation have at least a small
interaction. This is a relatively long range interaction,
given that the very compact ground state of the N donor.
Alternatively, one can look at optical spectra to check
broadening by donor–donor interactions. From our own data
(Lynch 2008, from data on samples provided by Professor K
Haenen) we find that observed linewidths for P donors are
broadly consistent with the estimates from methods 1, 2.

Method 4. Donor–acceptor pair spectra are observed in
diamond (Dischler et al 1994), with the resolution of quite
a few shells in emission (to shell 16 at 7.13 Å, then several
more that may include one at 12.6 Å) and also in absorption
(resolved to shell 13 at 6.37 Å). The resolution needed is of
order perhaps 30 meV, i.e., not especially good. These results
need a fairly deep donor (∼3.2 eV) so a shallow donor like P
would give a more substantial range.

All these estimates suggest interactions between an
excited control and a qubit over a useful range of spacings.
Using these several estimates, we can get orders of magnitude
for exchange interactions at various spacings, following the
approach of Stoneham and Harker (1975a, 1975b) and Harker

(2008). Our results for diamond can also be compared with
similar calculations for silicon.

6. Scoping potential for quantum information
processing

The gaps in knowledge about the spatial extents of electronic
excited states of dopants in diamond—both experimental and
theoretical—makes it hard to replicate the detailed calculations
of quantum gate dynamics that are possible for silicon
(Kerridge et al 2007). At this stage, however, the main need is
to scope the system, to see if there is a respectable chance that
P- and N-doped diamond might work as a quantum information
processor. Our emphasis is on the orders of magnitude of the
key parameters for the SFG approach. We are, of course, well
aware that defect and dopant engineering in diamond involves
very substantial practical difficulties, so another concern is how
severe these problems will be. We emphasize again that one
important feature of the SFG approach is its use of a random
distribution of dopants and its exploitation of inhomogeneity.

The calculations we do will be simple, based on minimal
basis sets for the effective mass envelope wavefunctions.
We emphasize that these are scoping calculations, not
attempting the most sophisticated methods currently available.
Technically, our approach is readily generalized, but such
enhancements are not appropriate in a case like this. As
known for some time (Shaffer and Williams 1964, Stoneham
1975 sections 4.2.7, 25.3, Andres et al 1981, Koiller et al
2002) there will also be a factor in any matrix elements from
the band Bloch functions. This will give either enhancement
or suppression, depending on precise relative spacings of the
sites involved, so certain combinations of positions may be
ineffective. This is not a major problem, since any computer
will exploit a selection of qubits and controls for which the
interactions are shown to be appropriate.

In figure 2(a), results are given for two P donors, taking
values for a 0.6 eV ionization energy with no central cell
corrections. Parallel calculations have shown that there is
no change in overall predictions if we achieve the 0.6 eV
ionization energy with 0.4 eV Coulombic binding plus a central
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cell term. The blue (dashed) curves are the 1s–1s exchange
terms, and the red (solid) the 2p–1s exchange, i.e., with an
excited electron. The energies are typically about ten times
as large as for P in Si at the maxima, so there are still usable
exchange energies out to 20 or 25 Å. The likely qubits might be
N or NV−, for which a smaller effective radius is appropriate.
Effective mass theory is not appropriate for either of these
potential qubit defects, but we can see the impact of their more
compact nature by reducing the effective Bohr radius of the
qubit in the calculations (figure 2(b)). Halving the qubit radius
reduces the interaction by about a factor 2, but does not alter the
distance dependence much, since that is determined primarily
by the radius of the excited P donor. In the figures, we need
the region in which the blue (dashed) curve is much smaller
than the red (solid) one, say beyond 18 Å for 0.4 eV or 9 Å for
0.6 eV. A sphere of radius 10 Å centred on a lattice site contains
742 atom sites, one of radius 18 Å contains 4327 sites, and
one of 25 Å contains 11 592 sites. Thus a local concentration
of even 100 ppm of the dopant might be effective. Dopant
spacings of order say 2 nm or less are needed. Within a region
even 20 nm across, one might have the necessary few hundred
dopants.

7. Distributions of dopants, interactions and
architectures

7.1. Architectures and inhomogeneity

Assume we have a diamond in which there are Nq potential
qubits and Ng potential gates in a region that can be addressed
optically at chosen wavelengths, intensities and pulse lengths.
The practical limit on the number of gates is determined
by the number of separately resolved transitions in the
inhomogeneously broadened absorption line of the control
species. As an initial guess, we shall assume, for a minimal
computer, both Nq and Ng will be of order 20 within any region
whose size is resolvable optically, typically a few 100 nm
across. There will, of course, be other dopant and defect
species present, and these we assume play no part, apart
perhaps from causing some of the (desirable) inhomogeneous
broadening.

The spacings of the N = Nq + Ng active species will
be of the order of a few nanometres, consistent with the
interactions discussed in section 4. So these N active species
might be confined within a region of about 10 nm across, rather
than spread through the optically-resolvable region. In other
words, this minimal computer of 20 or so gates (qubits) could
fit comfortably in a CVD grain or even in a nanodiamond
(nanodiamond takes various meanings in the literature, even
to a diamond 40 μm across!). If a small diamond—a grain or
a nanodiamond—is used, the surface will clearly have to be
passivated to eliminate spins, and we must be aware that the
proton spins of hydrogen, a common passivator, could cause
some decoherence. However, the passivating protons form
only a two-dimensional surface layer. There will be fewer
protons than if they were spread through the bulk (the solubility
of H in diamond is very low), and it should be possible to
arrange that the active quantum dopants are not close to the
surface.

The gates and qubits would occupy only a small fraction of
any one optically-resolvable region. Irrespective of whether a
microdiamond or a single crystal is used, a number of these
‘patches’ of 20 or so qubits will have to be linked to form
a serious computer. Since quantum computing power rises
dramatically with qubit number (as 2Nq , if error correction is
unnecessary) even a dozen of such patches—giving 200 or
so qubits—would be a significant computer. But connecting
patches is a challenge. There are various ideas, based on
electrons (e.g., Stoneham 2008a, 2008b) or photons (perhaps
exploiting the methods of Benjamin et al (2009)). These will
be analysed further in a paper in preparation.

7.2. Statistical issues

The assumption so far is that the distribution of dopants can
be random, with nothing done to encourage special spacings.
How efficient is this random doping?

Suppose we have randomly distributed dopants X (X = N,
P). If we want there to be one dopant within the first five shells
of neighbours, then the doping level must be high, over 2%
atomic. If we chose to have 1% atomic, then the Poisson
distribution tells us that 64.4% of dopants will have no other
dopant within the first five shells, 28.3% will have one dopant,
6.2% will have two dopants, and only 1.1% have more than
two dopants. This situation is not quite so bad as it sounds,
since the J values may well be good enough out to say 10–
20 Å, but it may be necessary to choose a region where the
properties have proved suitable. Typical dopings of P donors
give average concentrations of a few parts in 104, which is still
small; however, we need only a local region to have a raised
concentration.

7.3. Inhomogeneous broadening and its origins

We need to be able to excite a chosen P (or, strictly, a
chosen P/N/N group that constitute a gate), and here we need
to combine (a) optical focus—spatial resolution—with (b)
spectral resolution, exploiting the variation from one site to
the next of energies due (i) to interactions between dopants
and (b) due to say surface effects and other inhomogeneous
broadening. The inhomogeneous shifts can come from the
qubit energies, i.e., those of NV− or Ns instead of just P.
Overlap probably shifts the P peaks, whereas it may be electric
fields or stress that shift the NV− line; such shifts have been
quantified (Tamarat et al 2006). The fields could be from N+
or PV− or other charged species.

Shen et al (2008) showed that NV− have linewidths nearly
lifetime limited in 40 μm microdiamonds. In these small
diamonds, the smallest linewidths seem to be about 0.36 nm,
which is presumably largely homogeneous broadening δh.
The spectral distribution ranges over some 5 nm, suggesting
significant inhomogeneous broadening δi. The ratio δi/δh

is thus probably of order 5/0.36 ∼ 14, which suggests
that perhaps 10 gates might be achieved, even with these
unoptimized parameters. There are various ways that this ratio
might be made larger. Relatively modest densities of charged
defects, like N+ or PV− would probably cause useful extra
inhomogeneity, and raise the number of resolvable gates.

7
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8. Configuring a diamond device: which wavelength
operates which gate?

The configuring step establishes just which optical excitation
energies actuate which gates. In an ideal world, this step would
be done once only, and the device then operated many times.
How might this be done, assuming that we have very sensitive,
high resolution infrared (IR) and electron spin resonance (EPR)
equipment that—by signal averaging over long periods—can
have effective single centre detection? Ideally, we shall
not need to know what the dopant positions are. In this
section, we use what we know of the theory and energies to
reassure ourselves that there will be acceptable resolution and
information for configuration.

The configuring process would begin with a measurement
of the EPR spectrum as a function of the optical excitation
frequency. This yields a two-dimensional scan that provides
the needed information about which optical transitions affect
which EPR transitions and by how much. For Nq useful
qubits, it is necessary to have Nq resolved EPR resonances
with controllable interactions. A qubit’s interactions are
controllable for our purposes if the qubit is initially not
interacting with other qubits, but can be coupled to one or
more qubits by an optical resonance that can be resolved from
the other optical resonances that are already being used for
coupling. In the simplest useful case, exciting a particular
optical resonance would shift the position of exactly two EPR
resonances, indicating that these two EPR spins can be coupled
with such an optical frequency. In practice, some optical
excitations would couple more than two qubits, which would
not be a problem as long as the quantum algorithm was able to
make use of this.

Further information would then be obtained by going
beyond spectroscopy to pulsed resonance experiments. Higher
power would be required for both the EPR and optical radiation
so that Rabi oscillations can be recorded for each resonance to
be used. Finally, one would apply a π pulse to each optical
transition and measure how long the control should be left in
the excited state to produce a particular entangling gate. Most
quantum algorithms require just one such entangling gate, and
here it is important to choose one which leaves the control
unentangled with the qubits (Rodriquez et al 2004). The degree
of entanglement between the qubits would be followed with
pulsed EPR experiments similar to those used to violate Bell’s
inequalities (Neumann et al 2008, Lovett and Benjamin 2009,
Neumann et al 2009).

The procedure described here is a gradual buildup towards
doing a quantum computation. It appears that if a quantum
computation can be done with a system where we can observe
each resonance used, then we can configure the system by
studying it. This hypothesis would equally apply to systems
other than diamond.

Consider for illustration a system of Nq qubits and Nc

controls. If Nq were 3 and Nc were 2, these would suffice for
the minimal Deutsch–Jozsa case. Number the qubits 1, 2, . . .

and controls A, B, etc. We want to know which qubits
are controlled by which spins, and we want to do this from
the EPR and IR data alone. For an initial analysis, some

State 
Energy/meV

Transition Energy/meV 
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400

300

200

5 10 15 20 25
separation/Å

Figure 3. Transition energy, meV, for two controls, with parameters
for 0.6 eV Coulombic binding. The small basis set probably
exaggerates the change in splitting at small separations.

simplifying assumptions are appropriate. First, assume that
the IR transitions for the controls are separated sufficiently in
energy by inhomogeneous broadening. Secondly, suppose the
EPR signals of controls and qubits are distinct. Thirdly, assume
the EPR signals of the qubits are separated by inhomogeneous
broadening. We may reasonably assume further that the qubit
orbitals do not interact with each other or with controls in their
ground states and, as a working assumption, that, in the excited
state, the excited control electron interacts with only two of the
three qubits.

Our scoping calculations can guide us as to whether
these processes might be achieved. We can estimate all
the key energies for the approach outlined above, following
Stoneham and Harker (1975a, 1975b) to obtain exchange and
bonding–antibonding splittings. At this stage, we must now
calculate operationally-relevant properties of a quantum device
for chosen dopant positions and spacings. A choice is needed
simply as input for theory; dopants do not need to be placed
precisely in any real working device.

Figure 3 shows the energy dependence on separation for
two symmetrical centres, using minimal basis set estimates
for the two dopants involved. The limited basis set will lead
to overestimates of interactions and energy shifts at shorter
ranges; from comparisons with other calculations, spreads
of order 30–40 meV are surely realistic. Calculations with
larger basis sets are in hand. The corresponding exchange
interactions can also be calculated (figure 2(a)).

As illustration, take a small system of two controls
and three qubits, sufficient for an extended Deutsch–Jozsa
calculation. For realism, low symmetry is essential. The
approach is applicable to much larger systems subject to our
computational limits. In our illustrative example, we take a
two-dimensional system for simplicity, but our methods are
not restricted in this way. Without loss of generality, we put
the two controls symmetrically about the origin, C1 at (−a, 0)

and the C2 at (a, 0). The three qubits Q1, Q2, Q3 we place at
(−a −d, d/2), (−0.1a, d), (a,−d). We choose values of a, d
that give sensible distances e.g., a = 12 Å, d = 9 Å. Given the
chosen geometry, we may first calculate excitation energies.
More precisely, we wish to confirm that the two control

8
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Table 1. Exchange interactions between the excited controls and
qubits. For these calculations, the two controls are C1 at (−a, 0) and
C2 at (a, 0), with a = 10 Å. The three qubits Q1, Q2, Q3 are at
(−a − d, d/2), (−0.1a, d), (a,−d) with d = 9 Å.

Control–qubit Separation (Å) Exchange (meV)

C2 Q3 9 41.2
C1 Q1 10 32.3
C1 Q2 14 10.5
C2 Q2 16 5.6
C1 Q3 25.6 0.2
C2 Q1 33.3 0.01

excitations will be resolvable. We can also calculate exchange
interactions, since it is the qubit-excited state control exchange
interactions that lead to the effective couplings between qubits
that allow manipulation of entanglement.

Not surprisingly, the exchange interactions (table 1) vary
from substantial (C1 with Q1, Q2, and C2 with Q2, Q3)
to negligible (C1–Q3, C2–Q1). In this particular case, each
control only interacts significantly with two qubits; in a more
general random distribution, more than two qubits might
be coupled. Whilst one could also calculate qubit–qubit
interactions, the present approach—at the limits of effective
mass theory for the controls—would not be appropriate for the
compact Ns or NV− centres. Fortunately, there are far more
detailed calculations (Goss 2008b) that such interactions are
very small beyond fifth neighbours. The values of control–
qubit interactions are such that the configuring process outlined
above should be possible. For manipulations of spins using
the SFG approach, what we need to know as well are effective
interactions between Q1, Q2 (gate 1) and between Q2, Q3 (gate
2). These are of the order of the product of the (CiCj) and
(CiCk) exchange interactions divided by the excitation energy,
giving approximately 0.7 meV for gate 1 and 0.4 meV for gate
2. Such values are in an acceptable range.

9. Conclusions

We have combined experimental data with scoping calculations
of other quantities to assess whether one might make a
modest quantum computer (perhaps 10–20 qubits) in diamond,
following the approach of Stoneham et al (2003). This
SFG approach looks promising for qubit manipulations,
and decoherence (primarily spin–lattice relaxation, and
spontaneous emission) appears to be acceptable. Readout
and initialization have already been demonstrated by others
using the special properties of the NV− centres, and were
not re-analysed here. However, we note sequential readout
of qubits may not be the optimum approach. The configuring
step (establishing which wavelengths control which gate) looks
feasible for a system that is capable of acting as a computer.

We defer full discussions of two important topics to future
papers. First, we shall examine elsewhere other options for
readout. Secondly, we shall outline elsewhere ways that
might allow the creation of a serious quantum computer by
linking a number of mini-computers of 10–20 qubits. The
standard idea is that one might use some form of ‘flying qubit’,
but proposals so far leave much to be desired. One other

possible route is to find a way to integrate the mini-computers
with a measurement-based approach to quantum computing
(Benjamin et al 2009). Measurement-based QIP exploits the
generation of quantum entanglement between remote systems
by performing measurements on them in a certain way. The
systems might be two of the mini-computers, each containing a
single NV− centre prepared in specific electron spin states, the
two centres tuned to have exactly the same optical energies.
The measurement involves ‘single shot’ optical excitation,
exposing both systems to a weak laser pulse that, on average,
will achieve one excitation. The single system excited will
emit a photon that, after passing though beam splitters and
an interferometer, is detected without giving information as to
which system was excited. ‘Remote entanglement’ is achieved,
subject to some strong conditions. For effective links between
mini-computers, the strategy needs to be changed, but there
is here an important feature that links can be made over quite
large distances. All this is still very demanding, and might
still be defeated by issues of system integration. But it seems
optimistic enough to go forward.
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